Come "Lo sconto iperbolico" rivela difetti tipicamente umani

$config[ads_kvadrat] not found

tipi di sconto

tipi di sconto

Sommario:

Anonim

Chiunque sia guardato Bridget Jones's Diary sa che uno dei suoi propositi per l'anno nuovo è "Non uscire tutte le sere ma restare e leggere libri e ascoltare musica classica".

La realtà, tuttavia, è sostanzialmente diversa. Ciò che le persone effettivamente fanno nel loro tempo libero spesso non corrisponde a quello che dicono che faranno.

Gli economisti hanno definito questo fenomeno "lo sconto iperbolico". In un famoso studio intitolato "Pagare per non andare in palestra", un paio di economisti hanno scoperto che, quando alle persone veniva offerta la scelta tra un contratto a pagamento e un canone mensile, erano più propensi a scegliere il canone mensile e in realtà hanno finito per pagare di più per visita. Questo perché hanno sopravvalutato la loro motivazione ad allenarsi.

Lo sconto iperbolico è solo una sfida per operare in un settore creativo. I gusti sono molto soggettivi e gli elementi di trama e narrativa che rendono un film un successo tremendo potrebbero facilmente renderne un altro un fallimento critico e commerciale.

Per decenni, gli inserzionisti e i marketer hanno faticato a prevedere il consumo di prodotti per il tempo libero come film e libri. È ugualmente difficile decidere i tempi. In quale weekend uno studio dovrebbe pubblicare un nuovo film? Quando un editore rilascia una copia cartacea di un libro, come decide quando rilasciare la versione e-book?

Oggi i big data offrono una nuova visibilità sul modo in cui le persone sperimentano l'intrattenimento. Come ricercatore che studia l'impatto dell'intelligenza artificiale e dei social media, ci sono tre forze che mi distinguono come particolarmente potenti nel predire il comportamento umano.

1. Economia della coda lunga

Internet consente di distribuire prodotti di intrattenimento meno popolari dei successi tradizionali. Gli spettacoli di streaming possono acquisire un pubblico più ampio di quello che è economicamente fattibile per la distribuzione attraverso la televisione in prima serata. Questo fenomeno economico viene definito come effetto di coda lunga.

Poiché le società di media streaming come Netflix non devono pagare per distribuire contenuti nei cinema, possono produrre più spettacoli che soddisfano il pubblico di nicchia. Netflix ha utilizzato i dati delle abitudini di visualizzazione dei propri clienti per decidere di tornare Castello di carte, che è stato respinto dalle reti televisive. I dati di Netflix hanno mostrato che c'era una base di fan per film diretti da Fincher e film con protagonista Spacey, e che un gran numero di clienti aveva noleggiato DVD della serie originale della BBC.

2. Influenza sociale nell'era dell'intelligenza artificiale

Con i social media, le persone possono condividere ciò che stanno guardando con i loro amici, facendo altrimenti esperienze di intrattenimento indipendenti diventano più sociali.

Estraendo dati da siti sociali come Twitter e Instagram, le aziende possono monitorare in tempo reale cosa pensano gli spettatori di un determinato film, spettacolo o canzone. Gli studi cinematografici possono utilizzare un tesoro di dati digitali per decidere come promuovere spettacoli e date di uscita per i film.Ad esempio, il volume delle ricerche su Google del trailer di un film durante il mese precedente alla sua prima è un importante predittore dei vincitori dell'Oscar e delle entrate al botteghino. Gli studi cinematografici possono combinare i dati storici relativi alle date di uscita dei film e ai risultati al botteghino con le tendenze di ricerca per prevedere le date di uscita ideali per i nuovi film.

I dati sui social media minerari aiutano inoltre le aziende a identificare i sentimenti negativi prima che si trasformino in una crisi. Un singolo tweet di un influente cliente infelice può diventare virale, plasmare l'opinione pubblica.

In uno studio che ho condotto con Yong Tan dell'Università di Washington e Cath Oh della Georgia State University, abbiamo dimostrato come tale influenza sociale determini non solo quali video di YouTube diventino più popolari, ma anche che i video condivisi da utenti influenti siano visti in modo ancora più ampio.

Uno studio mostra che quando gli studios prestano attenzione ai richiami dei social media prima dell'uscita di un film, la differenza tra le entrate previste e le entrate effettive, nota come errore di previsione, è ridotta del 31%.

3. Analisi dei consumi

I dati di grandi dimensioni offrono una migliore visibilità su ciò che i libri e gli spettacoli in realtà passano il tempo a divertirsi.

Il matematico Jordan Ellenberg è stato il pioniere dell'uso dell'indice Hawking, una misura del numero medio di pagine dei cinque passaggi più evidenziati in un libro Kindle in proporzione alla lunghezza totale di quel libro. L'indice Hawking mostra quando le persone rinunciano a un libro. Se l'evidenziazione Kindle media di un libro di 250 pagine viene visualizzata a pagina 250, ciò equivale a un indice Hawking del 100 percento.

La teoria prende il nome da Stephen Hawking Una breve storia nel tempo. Mentre questo libro vende ancora milioni di copie all'anno, è anche raramente letto, con un triste indice Hawking del 6,6 per cento.

Quando un'azienda come Amazon decide quali libri consigliare ai potenziali lettori o quali Prime mostra di produrre, essi esaminano le tracce digitali dettagliate di quali punti della trama hanno coinvolto il pubblico e quali no. Questo potrebbe aiutarli a promuovere un'imminente rilascio o a fornire consigli migliori ai singoli utenti.

Inoltre, i nuovi tipi di intelligenza artificiale possono indagare su cosa rende le persone coinvolte nei contenuti creativi. Ad esempio, una società di nome Epagogix ha aperto la strada a un approccio utilizzando una rete neurale - uno strumento di intelligenza artificiale che cerca pattern in quantità molto elevate di dati - su un set di sceneggiature valutato da esperti nel settore dell'intrattenimento. Il computer potrebbe quindi prevedere il successo finanziario di un film. Secondo alcuni rapporti, tale intelligenza artificiale può prevedere fino al 75 percento delle reali incassi iniziali dei film.

Dati nuovi approfondimenti sui big data come questi, le società di intrattenimento potrebbero presto sapere che cosa esattamente Bridget Jones vorrebbe fare con il suo tempo libero meglio di Bridget stessa.

Questo articolo è stato originariamente pubblicato su The Conversation di Anjana Susarla. Leggi l'articolo originale qui.

$config[ads_kvadrat] not found